Rice Box Equilibrium Problems

1. Gaseous hydrogen iodide is placed in a closed container at 425° C, where it partially decomposes to hydrogen and iodine: 2 HI(g) \leftrightarrow H₂(g) + I₂(g). At equilibrium it is found that [HI] = 3.53 x 10⁻³ M, [H₂] = 4.79 x 10⁻⁴M, and [I₂] = 4.79 x 10⁻⁴ M. What is the value of Keq at this temperature?

Reaction	2HI = H2+I2	
Initial		
Change		
Equilibrium	3,53×10-3 4,79×10-4 4,79×10-4	
Ke	$=\frac{[H_2][I_2]}{[HI]^2} = \frac{(4.79 \times 10^{-4})(4.99 \times 10^{-4})}{(3.53 \times 10^{-3})^2} = \frac{2.29 \times 10^{-7}}{1.246 \times 10^{-5}} = 0,$	0189

2. A closed system initially containing 1.00×10^{-3} M H₂ and 2.00×10^{-3} M of I₂ at 448 °C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87×10^{-3} M. Calculate the Keq at 488°C for the reaction: H₂(g) + I₂(g) \leftrightarrow 2 HI (g).

Reaction	Hz+ Iz = 2HI	X=0,000935
Initial	1×10 ⁻³ 2×10 ⁻³ O	
Change	-x -x +2x	
Equilibrium	0,000065 0.00107 1.87x10-3	

$$K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{(.00187)^2}{(0.000065)(0.00107)} = \frac{3.49 \times 10^{-6}}{6.7 \times 10^{-8}} = 49.95$$

3. Sulfur trioxide decomposed at high temperature in a sealed container: $2SO_3(g) \leftrightarrow 2SO_2(g) + O_2(g)$. The initial concentration of $SO_3(g)$ is 6.1×10^{-3} M. At equilibrium the concentration of $SO_3(g)$ is 2.4×10^{-3} M. Calculate the Keq.

Reaction	2S03=	= 250 ₂ +	O ₂ .	
Initial	6.1×10-3			
Change	-2 X	+2X	+ 7	
Equilibrium	2.4x10 ⁻³	0,0037	0,00185	

$$0.0061-2x=0.0024$$

 $x=0.00185$

$$K_{c} = \frac{[SO_{2}]^{2}[O_{2}]}{[SO_{3}]^{2}} = \frac{(0.0037)^{2}(0.00185)}{(.0024)^{2}}$$

$$= \frac{2.5 \times 10^{-8}}{5.76 \times 10^{-6}}$$

$$= 6.00434$$

4. A mixture of 0.10 mol of NO, 0.050 mol of H_2 , and 0.10 mol of H_2O is placed in a 1.0 L vessel at 300 K. The following equilibrium is established: $2NO(g) + 2H_2(g) \leftrightarrow N_2(g) + 2H_2O(g)$ at equilibrium [NO] = 0.062M. Calculate the equilibrium concentrations of H_2 , N_2 , H_2O , and Keq.

Reaction	2N0+	2 Hz=	= N2 +	2H20
Initial	0.10	0.050		0.10
Change	-2×	-2×	+X	+2×
Equilibrium	0.062	0.012	0.019	0.038

5. A mixture of 0.687 mol H_2 and 0.439 mol of Br_2 is heated in a 2.00 L vessel at 700K. These substances react as follows: $H_2(g) + Br_2(g) \leftrightarrow 2$ HBr(g). At equilibrium the vessel is found to contain 0.566 g of H_2 . Calculate the equilibrium concentrations of the reactants, product, and the Keq.

Reaction	Hz+ B	rz = ZHBr
Initial	0,3435 0,2	195 O
Change	$-\chi$ $-\chi$	+2X
Equilibrium	0.14 0.0	165 0,406

$$0.3435 - x = 0.14$$

$$- x = -0.203$$

$$x = 0.203$$

$$- (0.406)^{2}$$

$$= (0.165)(0.14)$$

$$= 0.164836$$

$$= 0.00231$$