1. 1.7 g of $\mathrm{NaNO}_{3}\left(M_{r}=85\right)$ is dissolved in water to prepare $0.20 \mathrm{dm}^{3}$ of solution. What is the concentration of the resulting solution in $\mathrm{mol} \mathrm{dm}^{-3}$?
A. 0.01
B. 0.1
C. 0.2
D. 1.0
2. A fixed mass of gas has a certain volume at a temperature of $50^{\circ} \mathrm{C}$. What temperature is required to double its volume while keeping the pressure constant?
A. $\quad 100 \mathrm{~K}$
B. $\quad 323 \mathrm{~K}$
C. 373 K
D. 646 K
3. What is the concentration of NaCl , in $\mathrm{mol} \mathrm{dm}^{-3}$, when $10.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ solution is added to $30.0 \mathrm{~cm}^{3}$ of $0.600 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ solution?
A. 0.450
B. 0.300
C. 0.500
D. 0.800
4. The graph below represents the relationship between two variables in a fixed amount of gas.

Which variables could be represented by each axis?
A.
B.

\boldsymbol{x}-axis	\boldsymbol{y}-axis
pressure	temperature
volume	temperature
pressure	volume
temperature	volume

5. $\quad 8.5 \mathrm{~g}$ of NH_{3} are dissolved in $\mathrm{H}_{2} \mathrm{O}$ to prepare a $500 \mathrm{~cm}^{3}$ solution. Which statements are correct?
I. $\quad \mathrm{NH}_{3}$ is the solute and $\mathrm{H}_{2} \mathrm{O}$ is the solution
II. The concentration of the solution is $17 \mathrm{~g} \mathrm{dm}^{-3}$
III. $\left[\mathrm{NH}_{3}\right]=1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
6. $300 \mathrm{~cm}^{3}$ of water is added to a solution of $200 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium chloride. What is the concentration of sodium chloride in the new solution?
A. $\quad 0.05 \mathrm{~mol} \mathrm{dm}^{-3}$
B. $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
C. $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$
D. $0.3 \mathrm{~mol} \mathrm{dm}^{-3}$
7. $5 \mathrm{dm}^{3}$ of carbon monoxide, $\mathrm{CO}(\mathrm{g})$, and $2 \mathrm{dm}^{3}$ of oxygen, $\mathrm{O}_{2}(\mathrm{~g})$, at the same temperature and pressure are mixed together. Assuming complete reaction according to the equation given, what is the maximum volume of carbon dioxide, $\mathrm{CO}_{2}(\mathrm{~g})$, in dm^{3}, that can be formed?

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}
$$

A. 3
B. 4
C. 5
D. 7
8. What volume of sulfur trioxide, in cm^{3}, can be prepared using $40 \mathrm{~cm}^{3}$ sulfur dioxide and $20 \mathrm{~cm}^{3}$ oxygen gas by the following reaction? Assume all volumes are measured at the same temperature and pressure.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A. 20
B. 40
C. 60
D. 80
9. The volume of an ideal gas at $27.0^{\circ} \mathrm{C}$ is increased from $3.00 \mathrm{dm}^{3}$ to $6.00 \mathrm{dm}^{3}$. At what temperature, in ${ }^{\circ} \mathrm{C}$, will the gas have the original pressure?
A. $\quad 13.5$
B. 54.0
C. 327
D. 600
10. What volume of carbon dioxide, in dm^{3} under standard conditions, is formed when 7.00 g of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right.$, $M_{\mathrm{r}}=28.1$) undergoes complete combustion?
A. $\frac{22.4 \times 28.1}{7.00}$
B. $\frac{22.4 \times 7.00}{28.1}$
C. $\frac{2 \times 22.4 \times 28.1}{7.00}$
D. $\frac{2 \times 22.4 \times 7.00}{28.1}$
11. A toxic gas, A, consists of 53.8% nitrogen and 46.2% carbon by mass. At 273 K and $1.01 \times 10^{5} \mathrm{~Pa}, 1.048 \mathrm{~g}$ of A occupies $462 \mathrm{~cm}^{3}$. Determine the empirical formula of A. Calculate the molar mass of the compound and determine its molecular structure.

