Practice Quiz - Gas Laws and Molarity

- 1. 1.7 g of NaNO_3 ($M_r = 85$) is dissolved in water to prepare 0.20 dm^3 of solution. What is the concentration of the resulting solution in mol dm⁻³?
 - A. 0.01
 - B. 0.1
 - C. 0.2
 - D. 1.0
- 2. A fixed mass of gas has a certain volume at a temperature of 50 °C. What temperature is required to double its volume while keeping the pressure constant?
 - A. 100 K
 - B. 323 K
 - C. 373 K
 - D. 646 K
- 3. What is the concentration of NaCl, in mol dm⁻³, when 10.0 cm³ of 0.200 mol dm⁻³ NaCl solution is added to 30.0 cm³ of 0.600 mol dm⁻³ NaCl solution?
 - A. 0.450
 - B. 0.300
 - C. 0.500
 - D. 0.800
- **4.** The graph below represents the relationship between two variables in a fixed amount of gas.

Which variables could be represented by each axis?

	x-axis	y-axis
A.	pressure	temperature
B.	volume	temperature
C.	pressure	volume
D.	temperature	volume

Practice Quiz – Gas Laws and Molarity

I.

5.

		II.	The concentration of the solution is 17 g dm ⁻³	
		III.	$[NH_3] = 1.0 \text{ mol dm}^{-3}$	
	A.	. I and II only		
	B. I and III only			
	C.	II and III only		
	D.	I, II a	nd III	
6.	300 cm ³ of water is added to a solution of 200 cm ³ of 0.5 mol dm ⁻³ sodium chloride. What is the oncentration of sodium chloride in the new solution?			
	A.	0.05 1	$\rm mol~dm^{-3}$	
	B.	0.1 m	ol dm^{-3}	
	C.	0.2 m	ol dm^{-3}	
	D.	0.3 m	ol dm^{-3}	
7.	mixe	5 dm^3 of carbon monoxide, CO(g), and 2 dm^3 of oxygen, O ₂ (g), at the same temperature and pressure are mixed together. Assuming complete reaction according to the equation given, what is the maximum volume of carbon dioxide, CO ₂ (g), in dm ³ , that can be formed?		
			$2\text{CO}(g) + \text{O}_2(g) \rightarrow 2\text{CO}_2$	
	A.	3		
	B.	4		
	C.	5		
	D.	7		
8.	What volume of sulfur trioxide, in cm ³ , can be prepared using 40 cm ³ sulfur dioxide and 20 cm ³ oxygen gas by the following reaction? Assume all volumes are measured at the same temperature and pressure.			
			$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	
	A.	20		
	B.	40		
	C.	60		
	D.	80	(Total 1 mark)	

 $8.5~g~of~NH_3$ are dissolved in H_2O to prepare a $500~cm^3$ solution. Which statements are correct?

 NH_3 is the solute and H_2O is the solution

Practice Quiz - Gas Laws and Molarity

- 9. The volume of an ideal gas at 27.0 °C is increased from 3.00 dm³ to 6.00 dm³. At what temperature, in °C, will the gas have the original pressure?
 - A. 13.5
 - B. 54.0
 - C. 327
 - D. 600
- 10. What volume of carbon dioxide, in dm³ under standard conditions, is formed when 7.00 g of ethene (C_2H_4 , $M_r = 28.1$) undergoes complete combustion?
 - A. $\frac{22.4 \times 28.1}{7.00}$
 - B. $\frac{22.4 \times 7.00}{28.1}$
 - C. $\frac{2 \times 22.4 \times 28.1}{7.00}$
 - D. $\frac{2 \times 22.4 \times 7.00}{28.1}$
- 11. A toxic gas, A, consists of 53.8 % nitrogen and 46.2 % carbon by mass. At 273 K and 1.01×10^5 Pa, 1.048 g of A occupies 462 cm³. Determine the empirical formula of A. Calculate the molar mass of the compound and determine its molecular structure.