-Matter: Mixtures, Stubstances, Phase Change (1.1)
-Don't forget - naming compounds and writing formulas, balancing equations, assigning state symbols

- Dimensional analysis (unit conversions)
- Moles \rightarrow Grams conversions (1.2)
- Using mole ratios from a balanced equation
-Finding empirical/molecular formula, percent/heoretical yield, limiting reactants
-Finding uncertainty and error

Topic 1: Stoichiometric relationship

1.1 Introduction to the particulate nature of matter and change

- atoms of different elements combine in fixed ratios to form compounds, which have different properties from
their component elements (ex. pure sodium metal v. sodium chloride)
- mixtures contain more than one element and/or compound that are not chemically bonded together and so
retain their individual properties (ex. Intro lab, separation of a mixture)
- mixtures are either homogeneous or heterogeneous
- deduction of chemical equations when reactants and products are specificed
- application of state symbols (s), (I), (g), and (aq) in equations
- explanation of observable changes in physical properties and temperature during changes of state

Example Questions:

1. What is the sum of the coefficients for the equation when balanced using the smallest possible whole numbers?
$\mathrm{LN}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A. 5
B. 6
C. 7
(-) 8

Name:
Period:

Use the above graph to answer the following questions:
2. The graph most likely represents:
A. super cooled nitrogen gas returning to room temperature B. ice water being heated at a constant rate until it boils
C. the combustion reaction of ethane and oxygen gas
\qquad
Date: \qquad
Period: \qquad
D. solid lauric acid being heated at a constant rate until it melts
3. The phase change occurring between point D and E on the graph could best be described as:
i. Melting
ii. Evaporation
(iii.) Vaporization \leftarrow
iv. Sublimation
4. It is observed that when two liquids are mixed, the color of the solution changes. It can then be inferred that:
A. a physical change occurred

B a chemical change occurred
C. both a chemical and physical change occurred
D. neither a chemical nor physical change occurred
5. Match the following types of reactions:

1. Synthesis	$\mathrm{A} . \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$
2. Combustion	$\mathrm{B} . \mathrm{CuSO}_{4}+\mathrm{Fe} \rightarrow \mathrm{FeSO}$
3 +Cu	
3. Single Replacement	$\mathrm{C} .2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
4. Double Replacement	$\mathrm{D} .8 \mathrm{Fe}+\mathrm{S}_{8} \rightarrow 8 \mathrm{FeS}$
C_{2} 5. Decomposition	$\mathrm{E} .2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 10 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{CO}_{2}$

6. What are the 7 elements that exist as diatomic gases under normal conditions? (HAREBNCI) $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Z}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2}$
7. Apply state symbols to the following reactions:

$$
\begin{aligned}
& 2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{MgO}(s) \\
& \left.\mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{(a q)} \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{FeSQ}_{(a \mathrm{aq})}\right) \\
& 2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

8. Write balanced chemical equations with state symbols for the following reactions:
A. Solid lithium metal and water react to form aqueous lithium hydroxide and hydrogen gas

$$
\mathrm{Li}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow 2 \mathrm{~L}_{1} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

B. Lead (II) Nitrate reacts with sodium chloride in a double displacement reaction (all reactants and products are in aqueous solution)
C. $\mathrm{C}_{3} \mathrm{H}_{6}$ gas reacts with oxygen gas in a combustion reaction

$$
\mathrm{C}_{3} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{C}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+3 \mathrm{CO}_{2(\mathrm{~g})}
$$

IB Chemistry 1.1, 1.2, 11.1, 11.2 Review Sheet
Name:
Date:
Period: \qquad
D. Potassium nitrate decomposes when heated into potassium nitrite and oxygen gas

$$
\mathrm{KNC})_{3}(5) \rightarrow \mathrm{KNO}_{2}(\mathrm{~s}) \mathrm{ri}_{2}(\mathrm{~g})
$$

E. Solid magnesium metal reacts with hydrochloric acid in a single replacement reaction

$$
M\left(j(s)+=1\left(1(0.0)-\cdots: \cdot 2(g)-1_{j} \cdot 2(\% .0)\right.\right.
$$

1.2 The mole concept

- the mole is a fixed number of particles and refers to the amount, n, of a substance
- masses of atoms are compared on a scale relative to ${ }^{12} \mathrm{C}$ and are expressed as relative atomic mass (A_{t}) and relative formula/molecular mass (M_{t})
- molar mass (M) has the units g/mol or $\mathrm{g} \mathrm{mol}^{-1}$
- the empirical and molecular formula of a compound give the simplest ratio and the actual number of number of atoms present in a molecule respectively
Example Questions:

9. Which sample has the greatest mass?
A. 1 mol of $\mathrm{SO}_{2} \longrightarrow 64.05$
(B. 2 mol of $\mathrm{N}_{2} \mathrm{O} \longrightarrow 44 \times 2=88$
C. 2 mol of Ar
D. 4 mol of $\mathrm{NH}_{3} \longrightarrow 4 \mathrm{~L} \times 2=80$

$$
\xrightarrow{\longrightarrow} 17 \times 4=68
$$

10. What is the total number of hydrogen atoms in 1.0 mol of benzamide, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$?
A. 7
B. 6.0×10^{23}
C. 3.0×10^{24}
(D.) 4.2×10^{24}

$$
7 \times\left(6.02 \times 10^{23}\right)
$$

11. Which is both an empirical and a molecular formula?
(A.: $\mathrm{C}_{5} \mathrm{H}_{12} \rightarrow$ carnot!
B. $\mathrm{C}_{5} \mathrm{H}_{10} \rightarrow$ can be ieduced
c. $\mathrm{C}_{4} \mathrm{H}_{8} \rightarrow$ can be reduced
D. $\mathrm{C}_{4} \mathrm{H}_{10}>$ car. be reduce ${ }^{\text {i }}$
12. The molar mass of a compound is approximately $56 \mathrm{~g} \mathrm{~mol}^{-1}$. Which formula is possible for this compound?
A. $\mathrm{NaNO}_{3} \rightarrow 85$
B. $\mathrm{AgOH}_{-124}>12$ $\mathrm{g} / \mathrm{mol}$
(D.) $\mathrm{KOH}_{\rightarrow 50}^{\mathrm{MgO}}>40$
13. Which sample has the greatest mass?.
A. $\quad 6.0 \times 10^{25}$ molecules of hydrogen, $6.0=\times 10^{23}=99.67 \mathrm{~g}$
B. $\quad 5.0 \mathrm{~mol}$ of neon atoms $\times 20,17=100 .{ }^{n} \mathrm{~g}$
(c.) 1.2×10^{24} atoms of silver $/ 6.02 \times 10^{23}+1.5 n \times 107=214 \mathrm{~g}$
D. $\quad 1.7 \times 10^{2} \mathrm{~g}$ of iron

1709
\qquad
Date: \qquad
$9 / \mathrm{mol}$
Period: \qquad
14. On analysis, a compound with molar mass $60 \mathrm{~g}_{\mathrm{mo}} \mathrm{C}^{-1}$ was found to contain 12 g of carbon, 2 g of hydrogen and 16 g of oxygen. What is the molecular formula of the compound?
A. $\quad \mathrm{CH}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4} \mathrm{O}$
(C.) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

$$
\begin{array}{r}
\frac{6 \mathrm{C}}{30}=\frac{2 \times \mathrm{CH}_{2} \mathrm{O}}{\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}}
\end{array}
$$

$$
\left.\begin{array}{ll}
12 / 12=1 \quad 2 / 1=2 \quad .16 / 16=(1: 2: 1 \\
20 & 1: 2 \\
\mathrm{CH}_{2} \mathrm{O} & \mathrm{mp})
\end{array}\right)
$$

D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
15. Equal masses of the metals $\mathrm{Na}, \mathrm{Mg}, \mathrm{Ca}$ and Ag are added to separate samples of excess $\mathrm{HCl}(\mathrm{aq})$.

Which metal produces the greatest total volume of $\mathrm{H}_{2}(\mathrm{~g})$?
A. Na
B. Mg
C. Ca
D. Ag
we dicin't centres this yet
16. Which one of the following statements about SO_{2} is/are correct?
i. One mole of SO_{2} contains 1.8×10^{24} atoms
II. One mole of SO_{2} has a mass of 64 g .
A. Both I and II
B. Neither I nor II
C. I only
(D.) Il only
17. A pure compound contains 24 g of carbon, 4 g of hydrogen, and 32 g of oxygen. No other elements are present. What is the empirical formula of the compound?
E. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(F. $\mathrm{CH}_{2} \mathrm{O}$

$$
24 / 12=\sigma \quad 4 / 1=4
$$

$$
32 / 16=2
$$

G. $\mathrm{CH}_{4} \mathrm{O}$
H. CHO

$$
\text { . educe } 1
$$

$$
\mathrm{CH}_{2} \mathrm{C}{ }^{3}
$$

18. What is the empirical formula for the compound $\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH})_{2}$?
A. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{H}_{2}$

$$
\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}
$$

C. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}$
(D. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}$
cont rectus:
19. Smog is common in cities throughout the world. One component of smog is PAN (peroxyacylnitrate) which consists of $20.2 \% \mathrm{C}, 11.4 \% \mathrm{~N}, 65.9 \% \mathrm{O}$ and $2.50 \% \mathrm{H}$ by mass.
Determine the empirical formula of PAN, showing your work.

$$
\begin{aligned}
& 20.2 / 12=1.68 \mathrm{mocc} / 0.814=2.06 \\
& 11.4 / 14=0.814 \mathrm{~mol} / 0.814=1 \\
& 6.9 / 16=4.11 \mathrm{mrc} 0 / 0.814=5.04 \\
& 2.50011
\end{aligned} \quad \mathrm{C}_{2} \mathrm{NO} \mathrm{~N}_{5}+l_{3}
$$

20. 0.600 mol of aluminium hydroxide is mixed with 0.600 mol of sulfuric acid, and the following reaction occurs:

$$
2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 1 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

IB Chemistry 1.1, 1.2, 11.1, 11.2 Review Sheet
\qquad
(a) Balance the equation
(b) Determine the limiting reactant.
reactant
(c) Calculate the mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ produced.
(d) Determine the amount (in g) of excess reactant that remains.
$0.600 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \left\lvert\, \begin{array}{ll}2 \mathrm{~mol} 1 \mathrm{Al}(\mathrm{OH})_{3} \cdot 77.979 \mathrm{~g}=46.7874 \mathrm{~g} \text { have } \\ 2 \mathrm{molH} \mathrm{CO}_{4} \cdot \operatorname{lnol}\end{array}=31.1916 \mathrm{~g}\right.$ reacted $15.5958 \mathrm{~g}=15.6 \mathrm{~g}$ leftover
of excess of excess
11. Aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$, is made by reacting ethanoic anhydride, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{Mr}=102.1)$, with 2-hydroxybenzoic acid ($\mathrm{Mr}=$ 38.1), according to the equation:

$$
2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow 2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

a. If 15.0 g 2 -hydroxybenzoic acid is reacted with 15.0 g ethanoic anhydride, determine the limiting reagent in

$$
\begin{array}{l|l|l|l}
15 . \mathrm{Og}_{4} \mathrm{H}_{6} \mathrm{O}_{3} & \frac{1 \mathrm{~mol}}{102.1 \mathrm{~g}} & \frac{2 \mathrm{moC}}{1 \mathrm{moC}} & 138.1 \mathrm{~g} \\
\hline 1 \mathrm{~mol}_{7} \mathrm{H}_{6} \mathrm{O}_{3}
\end{array}=40.6 \mathrm{~g} \text { needed } \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}
$$

b. Calculate the maximum mass of aspirin that could be obtained in this reaction.
c. If the mass obtained in this experiment was 13.7 g , calculate the percentage yield of aspirin.

$$
\left.\% \text { yield }=\frac{13.7}{19.69}\right) \times 100=69.9 \%
$$

22. Determine the empirical and molecular formulas of each of the following substances:
a. Styrene, a compound substance used to make Styrofoam cups and insulation, contains $92.3 \% \mathrm{C}$ and $7.7 \% \mathrm{H}$ by mass and has a molar mass of $104 \mathrm{~g} / \mathrm{mol}$.

$$
C H=c m p \cdot f .
$$

$$
12: 1
$$

$$
\begin{array}{ll}
\frac{104}{13}=8 \times i H & 7.69,7.7,5 \\
\text { C8118 }=\text { Moles. } 4 . & 70.8,7.67 \\
& =1
\end{array}
$$

$$
\begin{aligned}
& \text { obtained }
\end{aligned}
$$

\qquad
b. Caffeine, a stimulant found in coffee, contains $49.5 \% \mathrm{C}, 5.15 \% \mathrm{H}, 28.9 \% \mathrm{~N}$, and $16.5 \% \mathrm{O}$ by mass and has a molar mass of $195 \mathrm{~g} / \mathrm{mol}$.

c. Monosodium glutamate (MSG), a flavor enhancer in certain foods, contains $35.51 \% \mathrm{C}, 4.77 \% \mathrm{H}, 37.85 \% \mathrm{O}, 8.29 \%$ N , and $13.60 \% \mathrm{Na}$, and has a molar mass of $169 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& 4.77 / 1=4.7710 .59=8 \quad \frac{169}{169}=1
\end{aligned}
$$

$$
\begin{aligned}
& 37,89 / 16=0,5910,59=1 \\
& 8,29 / 14=0,1
\end{aligned}
$$

molecular formula is
13.6/23=0.59/0.59 = 1 Muprof, a Mole carne $206 \mathrm{~g} / \mathrm{mol}$.
C $\quad 6.3075 / 0.964=6.5 \times 2=13$
H $\quad 8.8010 .969=9 \times 2=18$

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}
$$

- $0.969375 \% 0.969=1 \times 2=2$
molecular formula

$$
\frac{206}{206}=1
$$ is the same

e. Cadaverine, a foul-smelling substance produced by the action of bacteria on meat, contains $58.55 \% \mathrm{C}, 13.81 \% \mathrm{H}$, and $27.40 \% \mathrm{~N}$ by mass; its molar mass is $102.2 \mathrm{~g} / \mathrm{mol}$.

$$
\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2}
$$

H $\quad 13.81 / 1.95=7 \times 2=14$
N $1.95 / 1.95=1 \times 2=2 \quad \frac{102,2}{102}=1$
Molecuíar firmutar 6 -he same
\qquad
Exercises:

(a) ether $\mathrm{C}_{2}^{2} \mathrm{H}_{2}$
$\left.{ }^{1}\right)^{3} \mathrm{CH}^{\prime}$

$6,6+42$
(b) g luce $\mathrm{C}_{2} \mathrm{H}_{6}$
in (d) octane. $\mathrm{C}_{\mathrm{a}} \mathrm{H}$
d) C 4 盟

d) C 4 H 7 f$) \mathrm{CH}_{2} \mathrm{O}$
$25^{*}{ }^{2}$ sample of a compound contains only the elements sodium, sulfur, and oxygen. It is found by an andysistontan $\frac{0.979}{23} \mathrm{~g} \mathrm{Na}, \frac{1.365 \mathrm{~s} \text { s and }}{32} \frac{1.021 \mathrm{~g} \mathrm{O}}{16}$. Determine its empirical formula.
$\because 26$ A sample of anhexdraited compound was analysed and found to contain $2.10 \mathrm{gCO}, 1.14 \mathrm{~g}, 2.28 \mathrm{~g} \mathrm{O}$.

$$
\begin{aligned}
\frac{18}{18} & =.25 / 0.02565 \\
& =7
\end{aligned}
$$

$$
=7
$$

$$
\mathrm{CoSC}_{4} \cdot 7 \mathrm{H}_{2}{ }^{\circ}
$$

$$
0.03565 / 2.03565
$$

hydrate! !!
27. sA street trug hays the following composition: $83.89 \% . \mathrm{C}, 70.35 \% \cdot \mathrm{H}_{6} 5.76 \% \mathrm{~N}$. Determine its empirical

C
$6.9908 / 0.411:=17$

$$
10.35 \text { 心.4114 }=05
$$

$$
\text { C. } 17^{1-1} \operatorname{lis}^{\prime}
$$

$$
N 0.4114 / 0.4114=1
$$

- 28 The foil owing compounds are used ip the production of fertilizers. Determine which has the highest Pe peonage by mass of nitrogen NH) $\mathrm{Co}\left(\mathrm{NH}_{2}\right)_{2}$ (NH_{4}) SO_{4}

29. A compound has a formula M N in where M is a metal element and N is nitrogen. It contains 0.673 g of Ti s per gram of he metal M. Determine the relative atomic mass of M and so it identity. \quad i 7

$$
\begin{aligned}
& 0.6720+1 g=1.673 \mathrm{~g} \\
& 0.673 .5 \\
& 1.673=40 \% \\
& 40.7 \mathrm{~g} / 14=2 . i \mathrm{~T} \\
& 60 \% \\
& \operatorname{lng} / x \stackrel{ }{=} 2(2.81)=8.62
\end{aligned}
$$

$$
\begin{aligned}
& \frac{14}{17}=\frac{28}{60}=\frac{28}{132}-91 \% \\
& 82 \% \\
& 461
\end{aligned}
$$

\qquad
Date: \qquad
Period: \qquad

has the highest percentage by mass of cadmic med s: die CaTe

$$
\frac{112.41}{144.41}=77 \% \quad \frac{112.41}{191.36}=58 \% \quad \frac{12.40}{240.01}=46 \%
$$

$$
\begin{array}{ll}
7.74 / 1=-7.74 \mathrm{~mol} \mathrm{H} / 7.68=1 & (\mathrm{CH}) \frac{78.1}{13}=6 \\
92.26 / 12=7.68 / 76 \%
\end{array}
$$

32 Aweak aid has a molar, mass of 162 ginoif. Analysis of a 0.8821 g sample showed the composition

$$
\begin{aligned}
& \left.38.24 \mathrm{gP}\right|_{30.27 \mathrm{~g} P} ^{\operatorname{lmol}^{2}}=1.23 \mathrm{~mol} P / 1.23=1 \\
& 59.270 / 1 \text { mol }=3, \pi \operatorname{vut} 0 / 1.23 \pm=3
\end{aligned}
$$

33 ATP is an important mole in in living cells Ample with mass of 0.8138 g was analysed and found:

 formula ${ }^{\text {en }}$

$$
\begin{aligned}
& 0.1927 / .(138) \times 100 \%=23.67 / 12=1.972 .5 / .5929=3.33 \times 3 \\
& (02590 / .8138) \times 100 \%=3.182 \% 1=3.12 \% / 5929=5.33 \times 3 \\
& (.1124 / .8138) \times 100 \%=13.81 / 14=0.9865 \% .5929=1.66 \times 3 \\
& (.1491 / .8138) \times 100 \%=18.39109=0.59291 .5929=1 \times 3 \times 3
\end{aligned}
$$ excess oxygen. The productowere 0.66° g. of carbon dioxide and 0.36 g of water Determine the we "empirical formula of the c̣ompoünd.

$$
\begin{aligned}
& -\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{+}^{2} \mathrm{O}_{2} \rightarrow 4+\mathrm{H}_{2} \mathrm{O}_{(2)}+3 \mathrm{CO}_{2}(9) \\
& 0.30 \mathrm{~g} \quad \therefore \quad 0.36 \mathrm{~g} / 18 \cdot 0.66 \mathrm{~g} 44 \\
& C_{3}+I_{8}()+\operatorname{lO}_{2} \rightarrow 0: 02 / .015=1.3 .3: 015 / .015=1 \text {. } \\
& \therefore 4: 13
\end{aligned}
$$

Name: \qquad
Date: \qquad
Period: \qquad

Topic 11: Measurement and data processing analysis
11.1 Uncertainties and errors in measurements and results

- qualitive data include all non-numerical information obtained from observations not from measurement
- quantitative data are obtained from measurements, and are always associated with random errors/uncertainties, determined by the apparatus, and by how human limitations such as reaction times
- propagation of random errors in data processing shows the impact of the uncertainties on the final result
- experimental design and procedure usually lead to systematic errors in measurement, which cause a deviation in a particular direction
- repeat trials and measurements will reduce random errors but not systematic errors

Solve the following mathematical problems such that the answers have the correct number of significant figures:
36) $\quad 334.54$ grams +198 grams $=5^{3} 2 g$
37) 34.1 grams $/ 1.1 \mathrm{~mL}=31 \mathrm{~mL}$
38) 2.11×10^{3} joules $/ 34$ seconds $=62 \mathrm{~J} / \mathrm{s}$
39) 0.0010 meters -0.11 meters $=-0.11 \mathrm{~m}$
40) $349 \mathrm{~cm}+1.10 \mathrm{~cm}+100 \mathrm{~cm}=450 \mathrm{~cm}$
41) $\quad 450$ meters $/ 114$ seconds $=3.9 \mathrm{~m} / \mathrm{s}$
42) $\quad \overline{2} 98.01$ kilograms +34.112 kilograms $=325.12 \mathrm{~kg}$
43) $84 \mathrm{~m} / \mathrm{s} \times 31.221 \mathrm{~s}=2600 \mathrm{~m}$

IB Chemistry Error Notes and Worksheet
Uncertainty Rules for performing calculations:

$$
\begin{array}{ll}
x=\text { value } \\
d x=\text { absolute uncertainty of the value } & x \pm d x
\end{array}
$$

Averaging values (ie. multiple trials, up to 8): To find $X_{\text {avg }} \pm \mathrm{d}_{\text {arg }}$

$$
\begin{aligned}
& \text { Uncertainty of average }=\frac{(\text { (range of trials })}{(\# \text { of trials })}
\end{aligned}
$$ aaa is stated in the table below. What average value should be stated for this experiment?

Trial Number	1	2	3	4

Name: \qquad
Date: \qquad
Period:

Absolute Uncertainty on final value $=$ sum of absolute uncertainties

$$
\text { Ex: If } \quad(a \pm d c)+(b \pm d b)=c \pm d c
$$

$$
\text { Then, } a+b=c \quad \text { and, } \delta c-\delta a+\delta b
$$

45. Practice problem: Noa is frustrated by how quickly her coffee is cooling. She takes an initial temperature reading of $80 \pm 0.5^{\circ} \mathrm{C}$ and another reading after 2 minutes when the temperature is $70 \pm 0.5^{\circ} \mathrm{C}$. What is the change in temperature?

$$
\begin{aligned}
& \left.80-70=10^{\circ} \mathrm{C}=1{ }^{\circ} \mathrm{C} \quad 10 \pm 1^{\circ} \mathrm{C}\right) ., 0.5=10 .
\end{aligned}
$$

(now do \#13 and 14 in the chapter 11 problems)

Multiplying or Dividing values w/ uncertainty: to find $\quad z \pm d z$
Percent Uncertainty on final value $=$ sum of percent uncertainties

$$
\text { Ex: If } \quad(x \pm d x)(y \pm d y)=(z \pm d z)
$$

$$
\begin{array}{ll}
\text { Then, } x \cdot y-z & \text { and, } \frac{\delta z}{z}-\left(\frac{\delta x}{x}\right)+\left(\frac{\delta y}{y}\right) \\
\text { And the absolute uncertainty, } & \delta z-\left[\left(\frac{\delta x}{x}\right)+\left(\frac{\delta y}{y}\right)\right] \cdot z
\end{array}
$$

46. Practice problem: You cut a piece of paper to be a square so that you can make an origami crane.
$20 \times 20=400 \mathrm{~cm}^{2}$

$$
\frac{0.1}{20}=0.5 \%+0.5 \%=1 \%
$$

$$
400 \mathrm{~cm}^{2} \pm 4 \mathrm{~cm}^{2}
$$

$$
\text { abi:bluif }=\frac{10 \%}{100} \times 400 \mathrm{~cm}^{2}=4
$$

Name: \qquad
Date: \qquad
2. Find the error by finding the percent uncertainty and then adding them together.
oops - See cibove 2
47. Practice problem: (from notes) The lengths of the sides of a wooden block are measured to be $40.0 \pm 0.5 \mathrm{~cm}$ and $20.0 \pm 0.5 \mathrm{~cm}$. What would the absolute uncertainty of the block be?

$$
\left(\frac{0.5}{20.0}+\frac{0.5}{40}\right) \times 800^{00^{2}}=30 \mathrm{~cm} \quad 800 \mathrm{~cm}^{2} \pm 30
$$

Raising a value to a power:

Percent uncertainty on final value $=$ multiply percent uncertainty by the power
Ex. If $y \pm d y=(x \pm d x)^{n}$ then, $y=x^{n}$

$$
\text { And the absolute uncertainty, } \quad \delta y-\left[n \cdot\left(\frac{\delta x}{x}\right)\right] \cdot y
$$

48. Practice problem: You are measuring the volume of an origami cube that you just built. You measure each side to be $5 \pm 0.5 \mathrm{~cm}$, what would its volume be? $5 \times 5 \times 5=125 \mathrm{~cm}^{3}$

Multiplying/Dividing by a number without uncertainty:

Keep the same percent uncertainty on final value
Ex. If ($x \pm d x)($ constant $)$ then, (constant) $(x) \pm$ (constant) (dx)

$$
\text { So that } \quad \frac{\delta x}{x}-\frac{(\text { constant }) \cdot \delta x}{(\text { constant }) \cdot x}
$$

" "-
\qquad
Date:

Practice problems:

50. You are measuring the temperature of your Mitchell's ice cream as it mells over the course of 2

minutes.

Time (minutes)	0	0.5	1.0	1.5	2.0
Temp $\left(\pm 0.1^{\circ} \mathrm{C}\right)$	-10	-8	-8	-7	-6

What is the average temperature over the course of the 2 minutes?

Do you think there was error on the time?
51. You are measuring the area of the top of your desk. You estimate it to be $37 \pm 0.5 \mathrm{~cm}$ by $22 \pm 0.5 \mathrm{~cm}$, what is the area of the top of your desk?

a. When trees "sneeze," the branches are estimated to move $0.5 \pm 0.1 \mathrm{~m}$, if a tree sneezes 3 times, how far would one branch move?

