| Name:    |  |
|----------|--|
| Period:_ |  |

Topic 8.3 – HW set 2 READ p. 355-359 and complete exercises #9-15 on p.360

## Exercises

What happens to the pH of an acid when 10 cm<sup>3</sup> of it is added to 90 cm<sup>3</sup> of water? you up 1 unit

11 An aqueous solution has a pH of 9 at 25 °C. What are its concentrations for H<sup>+</sup> and OH<sup>-</sup>?  $[Hf] = IXIO^{-9}M$ 

For each of the following aqueous solutions, calculate [OH\*] from [H\*] or [H\*] from [OH\*]. Classify each solution as acidic, basic, or neutral at 298 K.

(a)  $[H^*] = 3.4 \times 10^{-9}$  mol dm<sup>-3</sup>  $\triangle$  [DH\*] =  $\frac{1 \times 10^{-14}}{1 \times 10^{-14}} = \frac{20.1 \times 10^{-14}}{1 \times$ 

DH=-log[0.01]=2  $HCI(aq) \rightarrow H^{+}(aq) + CI^{-}(aq)$ 

For each of the following biological fluids, calculate the pH from the given concentration of H<sup>+</sup> or OH<sup>-</sup> ions.

(a) hills:  $OH^{-1} = 8 \times 10^{-8} \text{ mol dm}^{-3}$ (b)  $OH^{-1} = 8 \times 10^{-8} \text{ mol dm}^{-3}$ 

(a) bile:  $[OH^{-}] = 8 \times 10^{-8} \text{ mol dm}^{-3}$ 

**(b)** gastric juice:  $[H^+] = 10^{-2} \text{ mol dm}^{-3}$ 

(c) urine:  $[OH^{-}] = 6 \times 10^{-30} \text{ mol dm}^{-3}$ 

0)-109 (1×10-14)=4,78

15 A solution of sodium hydroxide is prepared by adding distilled water to 6.0 g NaOH to make 1.0 dm<sup>3</sup> of solution. What is the pH of this solution? Assume that NaOH dissociates completely in solution:

$$NaOH(aq) \rightarrow Na^*(aq) + OH^-(aq)$$

$$\frac{6.09 \text{ NaOH} | 1 \text{ mol} | 1}{409} = 0.15 \text{ moldm}^{-3}$$

$$pH = -\log\left(\frac{1 \times 10^{-14}}{0.15}\right)$$

$$= 13.2$$

| Name:   |  |
|---------|--|
| Period: |  |

## pH AND pOH

| Name |  |
|------|--|
|      |  |

The pH of a solution indicates how acidic or basic that solution is.

pH range of 0 - 7 acidic

. 7 neutral

7-14 basic

Since [H+] [OH-] =  $10^{-14}$  at 25° C, if [H+] is known, the [OH-] can be calculated and vice versa.

 $pH = -log[H^+]$ 

So if  $[H^+] = 10^6 M$ , pH = 6.

pOH = -log[OH]

So if  $[OH^-] = 10^8 M$ , pOH = 8.

Together, pH + pOH = 14.

Complete the following chart.

|     | [H*]                | На  | [OH-]               | рОН | Acidic or Basic |
|-----|---------------------|-----|---------------------|-----|-----------------|
| 1.  | 10-5 M              | 5   | 10° M               | 9 - | Acidic          |
| 2.  | 10 <sup>-7</sup> M  | . 7 | 10 <sup>-7</sup> M  | 7   | neutral         |
| 3.  | 10-10 M             | ID  | 10⁴ M               | 4   | basic           |
| 4.  | `10⁴ M              | . 2 | 10 <sup>-12</sup> M | 12  | acidic          |
| 5.  | 10 <sup>-3</sup> M  | 3   | 10 <sup>-11</sup> M | 11  | acidic          |
| 6.  | 10-12M              | .12 | 1D-2.M              | 2   | basic           |
| 7.  | 10-9M               | 9   | 10⁵M                | 5.  | basic           |
| 8.  | 10 <sup>-11</sup> M |     | 10 <sup>-3</sup> M  | 3   | basie           |
| 9.  | 10-1 M              |     | 10 <sup>-13</sup> M | 13  | acidic          |
| 10. | 10-6M               | 6   | 1D-8M               | 8   | acidie          |

| Name:_ |   |
|--------|---|
| Period | • |

PROBLEMS: Show all work and circle the final answer.

1. Determine the pH of a 0.010 M HNO<sub>3</sub> solution.

$$pH = -log(0.01) = 2$$

2. What is the pH of a  $2.5 \times 10^{-6} M$  solution of HCl?

PH=-10g(2.5x10-6)=5.6 3. Calculate the pH of a solution of 0.0025M  $H_2SO_4$ . (assume dissassociates to  $H^++$   $HSO_4$ )

4. Calculate the pH of a 0.0010 M NaOH solution.

$$PH = -\log\left(\frac{1 \times 10^{-14}}{0.001}\right) = 11$$
5. What is the pH of a 0.020M Sr(OH)<sub>2</sub> solution?
$$PH = -\log\left(\frac{1 \times 10^{-14}}{2 \times 0.02}\right) = 12.4$$

6. a) What is the hydrogen ion concentration of an aqueous HCl solution that has a pH of 3.0?

c) Which ion, H+ or OH, is in greater concentration?

7. Find the [H+] and the [OH-] of a solution with a pH of 3.494.

[H] and the [OH] of a solution with a pH of 3.494.  
[H]=
$$10^{-3.494} = 3.21 \times 10^{-14} \text{ mol dm}^{-3}$$
  
[OH]= $\frac{1\times 10^{-14}}{3.21\times 10^{-4}} = 3.11\times 10^{-11} \text{ mol dm}^{-3}$ 

Is this solution acidic or basic? and ic

| Name:   |  |
|---------|--|
| Period: |  |

H

| W set 3 READ p. 360-363 and complete exercises #16-18 on p. 363                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exercises                                                                                                                                                                                                                                                      | grand and a second a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 16 Which of the following 1 mol dm <sup>-3</sup> solutions will be the poorest conductor A HCI B CH <sub>3</sub> COOH C NaOH  17 Which methods will distinguish between equimolar solutions of a strong by                                               | or of electricity?  MNaCl  Machine Machine  Misocia  The property of the prope |
| Add magnesium to each solution and look for the formation of gas by Add aqueous sodium hydroxide to each solution and measure the term. Use each solution in a circuit with a battery and lamp and see how by I and II only B I and III only C II and III only | ubbles.<br>mperature change.<br>rightly the lamp glows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Which acid in each of the following pairs has the stronger conjugate base</li> <li>(a) H<sub>2</sub>CO<sub>3</sub> or H<sub>2</sub>SO<sub>4</sub></li> <li>(b) HCI or HCOOH</li> </ul>                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a) HCO3, or HSO4                                                                                                                                                                                                                                               | weaker acid<br>has stronger<br>conjugate base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

62 H2(03 Weaker than
H2SO4

Cr COOH

Cr COOH

because
HCOOH is
Weaker