1. Given the following information for magnesium, oxygen, and magnesium oxide calculate the second electron gain enthalpy for oxygen {i.e. for $O^-(g) + e^- \rightarrow O^{2-}(g)$ }.

for Mg (s), ΔH_{sub} = +148 kJ/mol 1st ionization energy for Mg = +738 kJ/mol 2nd ionization energy for Mg = +1450 kJ/mol

bond dissociation energy for O_2 = +499 kJ/mol 1^{st} electron gain enthalpy for O = -141 kJ/mol for MgO (s), lattice energy = +3890 kJ/mol for MgO (s), enthalpy of formation = -602 kJ/mol

2. Consider an ionic compound MX_2 where M is a metal that forms a cation of +2 charge, and X is a nonmetal that forms an anion of -1 charge. A Born-Haber cycle for MX_2 is given below. Each step in this cycle has been assigned a number (1-7).

a. Identify one step (1 - 7) that is endothermic as written.

b. Which step (1 - 7) corresponds to ΔH_{sub}^{o} ?

c. Which step (1 - 7) corresponds to ΔH_f^0 ?

d. Use the following energy values to calculate the lattice energy (in kJ/mol) for MX₂. $\Delta H^o_{sub} = 296$ kJ/mol; $\Delta H^o_f = -421$ kJ/mol; 1^{st} ionization energy = 378 kJ/mol; 2^{nd} ionization energy = 555 kJ/mol; bond dissociation enthalpy = 310 kJ/mol; electron affinity = -427 kJ/mol.

Chem 182 Chem 1711

Born-Haber Cycle, Practice Problems

1. Given the following information for magnesium, oxygen, and magnesium oxide calculate the second electron gain enthalpy for oxygen {i.e. for $O^-(g) + e^- \rightarrow O^{2-}(g)$ }.

for Mg (s), ΔH_{sub} = +148 kJ/mol 1st ionization energy for Mg = +738 kJ/mol 2nd ionization energy for Mg = +1450 kJ/mol

bond dissociation energy for O_2 = +499 kJ/mol 1st electron gain enthalpy for O = -141 kJ/mol for MgO (s), lattice energy = +3890 kJ/mol for MgO (s), enthalpy of formation = -602 kJ/mol

Mg O (S) so 2nd_{EA} = ΔH^o_c + LE - ΔH^o_{sub} = 1^{S+} IE -2nd IE - (½ ΔHairs) - 1^{S+}EA E 2nd_{EA} = (-602 + 3890 - 148 - 738 - 1450 - (½ · 499) + 141) KJ7mol

= + 844 KJ7mol

ΔH° = ΔH_{Sub}+1^{s+}IE + 2ndIE + 1/2 (ΔHdiss) + 1^{s+}EA + 2ndEA - LĒ

2. Consider an ionic compound MX₂ where M is a metal that forms a cation of +2 charge, and X is a nonmetal that forms an anion of -1 charge. A Born-Haber cycle for MX₂ is given below. Each step in this cycle has been assigned a number (1-7).

- a. Identify one step (1 7) that is endothermic as written. 3,4,5,6
- b. Which step (1 7) corresponds to ΔH^o_{sub} ?
- 3
- c. Which step (1 7) corresponds to ΔH_{i}^{o} ?
- d. Use the following energy values to calculate the lattice energy (in kJ/mol) for MX₂. $\Delta H^o_{sub} = 296 \text{ kJ/mol}$; $\Delta H^o_f = -421 \text{ kJ/mol}$; 1^{st} ionization energy = 378 kJ/mol; 2^{nd} ionization energy = 555 kJ/mol; bond dissociation enthalpy = 310 kJ/mol; electron affinity = -427 kJ/mol.

$$\Delta H_{f}^{o} = \Delta H_{Sub}^{o} + 1^{s+} IE + 2^{nd} IE + \Delta H_{diss} + 2(EA) - LE$$

 $\therefore LE = \Delta H_{Sub}^{o} + 1^{s+} IE + 2^{nd} IE + \Delta H_{diss} + 2(EA) - \Delta H_{f}^{o}$
 $= \left[296 + 378 + 555 + 310 + 2(-427) - (-421)\right] KJ7mol$
lattice energy = $+1106$ KJ7mol